User's Manual
SBasic Compiler Version 2.5

by

Karl E. Lunt

Copyright (c) 1996, 1998 Bothell, WA

All rights reserved

Printed May 8, 1998
Modify in Microsoft word 97 by

Supachai Budsaratij

Printed 14 June, 2000

Table of Contents
 Introduction 4

 History of SBasic 5

 Invocation 7

 Command-line options 8

 Environment variables 10

 Library files 11

 Features 12

 Remarks 14

 Include files 15

 Labels 16

 Numeric constants 17

 Variables, arrays, and named constants 18

 Data tables 20

 COPY statement 22

 Comparisons 23

 Control structures 24

 Functions and statements 29

 Subroutines, GOSUB, and USR() 36

 The RETURN statement 38

 The ORG statement 41

 The data stack 43

 ASM and ENDASM 45

 ASMFUNC 47

 ASMFUNC, _INKEY, and _OUTCH 50

 Character I/O on the 68hc11 51

DISCLAIMER

I am releasing the executable for the SBasic compiler, all supporting library and include files, assorted test cases, and this document as freeware. Feel free to use SBasic for whatever non-commercial application seems appropriate.

The SBasic compiler, with or without its attendant support files, is freeware and in the public domain. You may not charge for the sale or distribution of SBasic or its distribution files. If you distribute SBasic to others, please include this manual in its present form, complete with this disclaimer.

I make no warranty, representation, or guarantee regarding the suitability of SBasic for any particular purpose, nor do I assume any liability arising out of the application or use of SBasic, and I disclaim any and all liability, including without limitation consequential or incidental damages.

You, as the user, take all responsibility for direct and/or consequential damages of any kind that might arise from using Sbasic in any fashion.

I do not warrant that SBasic is free of bugs. If you find what you think is a bug, kindly let me know what it is IN DETAIL, and I'll certainly consider fixing it in a later release, if there ever is such.

I developed SBasic as a tool for working with the Motorola 68hc11 and 68hc12 MCUs. If you use SBasic for developing robotics (or other) application code and find it useful, fine. If you don't find it suitable in some fashion, then don't use it.

 DISCLAIMER

 Karl Lunt

 116 173rd St., SW

 Bothell, WA 98012

Introduction

This manual describes the use of the SBasic (SB) compiler. SB is a PC-based cross-compiler for a subset of the Basic language. Source files containing SBasic statements are compiled into a source file of assembly language for the target machine. Subsequent assembly of that file yields an exectuable file for the target machine.

SB creates code for either a 68hc11 or 68hc12 target. For the 68hc11, SB's output code is compatible with the Motorola FREEWARE asmhc11 assembler, which is bundled with the SBasic distribution files. For the 68hc12, SB's output code is compatible with the Motorola FREEWARE as12 assembler, available from several sites on the Internet, including my web site (http://www.seanet.com/~karllunt).

The SBasic compiler was written in Borland C (version 4.52), and is compiled as a 32-bit DOS standard app. My SB design is loosely based on a small Basic interpreter developed by Herbert Schildt and presented in his excellent book, "The Art of C." (Osborne McGraw-Hill, Berkeley, CA 94710; ISBN 0-07-881691-2)

History of SBasic

Version 2.5 *finally* kills the last known bug in SB, which corrupted comparison tests in several different loop constructs. The distribution file contains a number of test cases that verify the bug is finally dead (I hope!).

Version 2.4 generates all assembler literals as hex constants, rather than decimals. It also replaces the JMP *+5 branching construct in 6812 output with a straight branch; the 6812 assembler will automatically assign the correct branch opcode. It also fixes a bug in the shift and roll functions, which were generating dead PSHx-PULx instructions.

Version 2.3 adds the ~ unary operator, which generates the one's complement of an argument. It also now reports an error if the source file contains a DO with an UNTIL or WHILE but without a terminating LOOP. It also now reports an error if an IF statement does not contain a comparison clause.

Version 2.2 adds the MIN(), MAX(), MINU(), and MAXU() functions. It also fixes a nasty bug in the assignment operator, which created bad code if you set a variable equal to an array element.

Version 2.1 adds the COPY statement, for moving blocks of data between areas of memory. Runtime support relies on two new library files, COPY11.LIB and COPY12.LIB.

Version 2.0 adds support for the 68hc12 MCUs. Code output does not take full advantage of the newer instruction set, but it's a start.

Version 1.5 fixes bugs in code generated for certain uses of peek()and peekb(). Also fixes an obscure bug in certain array operations. Also allows use of '_' (underscore) in function names; see description of ASMFUNC statement below. Also cleaned up the array assignment code; complex array index calculations seem to work fine. If you notice any that don't, please contact me.

Version 1.4 fixes bugs in code generated for certain uses of multiply.
Version 1.3 fixes bugs in code generated for certain uses of peek()and
peekb().

Version 1.2 changes the assembly source for variable references. SB now creates variable references with unique labels, rather than as offsets to the varbeg address. Added support for inline assembly language, through the ASM and ENDASM statements. Added support for the ASMFUNC statement, used to define SBasic entry points into assembly language routines. Cleaned up the code generated for POKE and POKEB statements; handles literal target addresses more cleanly. Fixed bug in POKE and POKEB statements; older versions compiled bad code for multiplies in the second argument.

Version 1.1a fixes remaining bugs in the code generator regarding arrays. It also fixes a nasty bug concerning operations such as / (division), mod, poke(), and pokeb(). The code generated for these operations was bad if the result was stored into an array element.

Version 1.1 contains fixes to the code generator regarding arrays and the
ADDR() function. In particular, the code generated for array references is much tighter.

I removed the error message for labels that are defined but not referenced. This made developing modules of code too difficult; if you mistype the name of a label, you're going to get other errors, anyway.

I added the SWAP command, to make it easier to deal with multiple items on the data stack.

Version 1.0 follows a long succession of beta releases, spanning many months. In 1.0, SBasic finally reached a point where, like it or not, I had to call the project done, at least for now.

Version 1.0 supports single-dimension arrays, as well as math operations in constant declarations. These features, added to those already existing in the previous beta release, constitute what I consider to be the bare minimum for a final system.

At this point, however, the code generator is getting kind of fragile, and needs to be rewritten. This is a large task that I won't take on easily, but I'll continue to support SBasic for bug fixes.

Invocation

You execute SB by entering the command:

sbasic infile <options>

where 'infile' contains the path to the source file you wish to compile. SB writes its output, the assembly language source for the target, to the standard output, which is normally the screen.

You can redirect the output file to another file by entering the command:

sbasic infile <options> >outfile
where 'outfile' is the path to an output file to hold the created source lines.

If SB did not detect any errors in your source file, its output file should assemble correctly with the appropriate target assembler. If SB detected errors, it inserts error notices in the output file. These are almost guaranteed to generate numerous errors if the resulting output file is assembled.

SBasic supports several command-line options, used to control the addresses of key elements in the final program. These options will be explained in detail below.

Upon completion, SB returns an errorlevel that can be used to determine success or failure of the compilation. If SB successfully compiled the source program, it returns an errorlevel of 0. If SB detected one or more errors during compilation, it returns an errorlevel of 1.

Command-line options

You can control the placement of variables, code space, and stack space in the target executable by means of SBasic command-line options. If you supply any options in your command line, they must follow the name of the SBasic source file. Refer to the above section on executing SBasic.

You can control where SBasic places the start of its RAM variables by using the /v option. The format of this option is:

/vxxxx
where xxxx is a four-digit hexadecimal address that marks the start of the variable space. SBasic assigns this address to the assembler label VARBEG; if you do not use the /v option, SBasic assigns a default value of $0000 to VARBEG.

You can control where SBasic places the beginning of the executable code by using the /c option. The format of this option is:

 /cxxxx
where xxxx is a four-digit hexadecimal address that marks the start of the code space. SBasic assigns this address to the assembler label CODEBEG; if you do not use the /c option, SBasic assigns a default value of $b600 to CODEBEG.

You can control where SBasic places the top of the target's stack space by using the /s option. The format of this option is:

 /sxxxx
where xxxx is a four-digit hexadecimal address that marks the top of the stack space. SBasic assigns this address to the assembler label STKBEG; if you do not use the /s option, SBasic assigns a default value of $00ff to STKBEG.

You can control the type of branch instruction SBasic creates by using the /b option. The format of this option is:

 /b

SBasic normally converts a transfer or jump instruction into two assembly language source lines. The first line is a relative branch around the next line, and the second line is a long jump to the target address. For example:

while

n=3
wend
contains a branch instruction that tests the value of variable N and branches back to the WHILE statement if N equals 3.

For the 68hc11 and 68hc12 MCUs, SBasic normally generates code similar to:

whl000

ldd var001

cpd #3

bne *+5
branch instruction, line 1

jmp whl000

branch instruction, line 2

For short transfers, where the branch target is within the relative addressing limit of the target MCU, this code is larger and will run more slowly than necessary.

Using the /b option forces SBasic to generate relative branches directly to all targets. If the /b option is in effect, SBasic would generate the following code for the above example:

whl000

ldd var001

cpd #3

beq whl000 branch instruction

Note that the branch has reversed sense, and the JMP instruction has disappeared.

WARNING: Branches to addresses beyond the target MCU's relative branch limit will result in assembler errors, even though SBasic will not report any compilation errors. SBasic does not maintain an internal program counter, and will not detect that a branch target is out of range.

Beginning users should omit the /b option, and accept the slight increase in size and execution times caused by the default branch code generation.

Experienced users may, however, use the /b option to gain improved performance. In this case, however, you must carefully monitor the assembler's output for any errors resulting in out-of-range branches.

If your code generates out-of-range branches using the /b option, recompile without the option. SBasic currently does not support any method for selectively compiling direct branches.

You can select the target MCU by using the /m option. The format of this option is:

 /mxxxx
where xxxx is either 6811 to generate output code for the 68HC11 MCU, or 6812 to generate output code for the 68HC12 MCU. If you don't supply the /m option, SB will generate code for the default MCU, the 68HC11.

The differences in output code caused by compiling for the two machines mostly concerns the library files used. See the discussion below on library files for more details.

Certain variations of the 68HC12, notably the 68HC912B32, use on-chip firmware to take over the MCU's interrupt vector table. Similarly, some 68hc11 chips include masked ROM firmware (such as BUFFALO) that also takes over the vector table. In both these cases you need to prevent SBasic from trying to set up a vector table on the target machine. You can prevent SB from creating an interrupt vector table by using the /i option. The format of this option is:

 /i

If you use the /i option and your SB program must use interrupts, you will have to add SB code to prepare the appropriate RAM-based jump table. Refer to the Motorola literature on your target MCU for details.

Note that the /i option surpresses ALL changes to the vector area, including the reset vector. SB programs compiled with the /i option must use some resident firmware, such as BUFFALO, to transfer control to the start of the program.

Environment variables

SB supports the use of two DOS environment variables. These variables can help ease development of multiple projects in SBasic.

When SB begins execution, it checks for the existence of two environment variables, SB_INCLUDE and SB_LIBRARY. SB assumes SB_INCLUDE contains the path to a directory containing custom INCLUDE files. Similarly, SB assumes SB_LIBRARY contains the path to a directory containing the standard SBasic library files. If either of these environment variables does not exist, SB defaults to the current directory when searching for any corresponding files.

You can assign a path to either of these variables in your AUTOEXEC.BAT file, using DOS' SET command.

Example:

 set SB_INCLUDE=C:\MYPROJ\INC

 set SB_LIBRARY=C:\SBASIC\LIB

These commands assign paths to the SB_INCLUDE and SB_LIBRARY environment variables.

Library files

SB normally compiles all operations into in-line assembly language source for the target machine. In some cases, however, a function may translate into so many lines of source code that inserting the code in-line each time the function is used would yield an unacceptably large output file.

In these cases, SB automatically appends one or more files of assembly language source code to the output file. These files, called library files, contain pre-written source code for performing the corresponding operation.

For example, most versions of the 68hc11 require several lines of assembly language code to perform a 16-bit by 16-bit multiplication. Rather than insert this large section of assembler source every time your program uses the * operator, SBasic instead compiles a JSR to a library assembly language subroutine.

At the end of your output file, SBasic then includes the library file containing the source code for this multiplication subroutine.

SBasic only includes library files when necessary, based on your source code.

One library file deserves special mention. SB always includes the library file START11.LIB (START12.LIB for the 68hc12 MCU) during each compilation. The assembly language source in this file will be executed each time the target machine begins running your Sbasic program. In fact, the code in this file is executed immediately following system reset.

If your SBasic application requires changes to the time-sensitive I/O registers in the 68hc11, you can customize START11.LIB to include those changes.

Note, however, that you should not change any of the labels provided in the original versions of START11.LIB and START12.LIB. Other parts of the SBasic system require that those labels exist, and that they be named exactly as they are.

Features

SB is a free-form Basic that supports enough control structures, such as IF-ELSE-ENDIF, that line numbers should not be necessary. It does not expect nor support line numbers; if you use them, you will get a syntax error back.

SB does not support GOTO.

SB generates code that uses the target's largest commonly available accumulator(s). This means that for the 68hc11 and 68hc12, SB uses 16-bit variables and 16-bit math operations.

SB compiles down to fairly concise assembly language. It does no optimization from source line to source line. That is, it does not maintain a history of register usage and attempt to optimize out redundant operations. Even so, the generated code is quite compact, and will run fast enough to accomodate most projects.

For those projects that demand higher performance, SB allows you to embed assembly language source directly in your program. These assembly statements are passed intact to the target assembler.

SB is case-insensitive with regard to statements, labels, variables, and constants. The variable FOO may also be referred to as foo, Foo or fOo.

SB supports the following Basic functions and operators:

rem starts an SBasic comment

' (single quote) starts an SBasic comment

include includes other SBasic source files

org changes location of generated code

data stores 16-bit values in a ROM table

datab stores 8-bit values in a ROM table

copy copies a block of data between two memory areas

= assignment

+ addition

- subtraction; unary negation

~ 1's complement

* integer multiply

/ integer divide

mod integer modulus

and boolean AND

or boolean OR

xor boolean XOR

= test, equal

< test, less-than

> test, greater-than

<>, >< test, not-equal

<* test, unsigned less-than

>* test, unsigned greater-than

rshft() shift argument 1 bit to right

lshft() shift argument 1 bit to left

rroll() rotate argument 1 bit to right

lroll() rotate argument 1 bit to left

min() returns smaller of two values (signed)

max() returns larger of two values (signed)

minu() returns smaller of two values (unsigned)

maxu() returns larger of two values (unsigned)

peek() read 16-bit contents of an address

peekb() read 8-bit contents of an address

poke write 16-bit value to an address

pokeb write 8-bit value to an address

swapb exchange bytes

for starts a FOR-NEXT iterative loop

to signed test in a FOR-NEXT loop

to* unsigned test in a FOR-NEXT loop

step optional part of a FOR-NEXT loop

next ends a FOR-NEXT loop

if starts an IF-ELSE-ENDIF structure

else part of an IF-ELSE-ENDIF structure

elseif part of an IF-ELSE-ENDIF structure

endif ends an IF-ELSE-ENDIF structure

while starts a WHILE-WEND structure

wend ends a WHILE-WEND structure

do starts a DO-LOOP structure

while optional part of a DO-LOOP structure

until optional part of a DO-LOOP structure

loop ends a DO-LOOP structure

waitwhile waits while an I/O condition exists

waituntil waits until an I/O condition occurs

select starts a SELECT-CASE structure

case starts a CASE clause within a SELECT-CASE structure

endcase ends a CASE clause

endselect ends a SELECT-CASE structure

exit leaves loop structure early

print output text to the console

printu output text; numbers print as unsigned

printx output text; numbers print as hexadecimal

inkey() input a character from the console

outch output a character to the console

interrupt marks start of an SBasic ISR

const creates a named constant

declare creates a single 16-bit variable

asm marks start of inline assembly language source

endasm marks end of inline assembly language source

addr() returns address of a label or variable

push pushes a value onto the SB data stack

pop() pops a value from the SB data stack

pull() synonym for pop()

place change an element in the SB data stack

pick() copy an element from the SB data stack

drop remove one or more elements from SB data stack

interrupts enables or disables system interrupts

gosub invokes an SBasic subroutine

usr() invokes an SBasic subroutine, returns one value

return returns from an ISR or subroutine

end ends an SBasic program or ISR

Remarks

SBasic provides two comment delimiters, for imbedding remarks in your source files. The traditional REM statement can be used to start a comment at nearly any point in an SBasic program. You can also use the newer ' (single-quote). All text following a remark delimiter is ignored by the SBasic compiler.

You can place a comment at the beginning of any line. You can also place a comment at the end of any complete SBasic statement. You cannot place a comment within an SBasic statement.

Example:

rem This is a legal comment

' So is this

a = c + 5
' this is a legal comment, too

a = c +
' this is illegal!

Note that you can always insert a blank line anywhere in your source; SBasic always ignores blank lines.

Include files and the INCLUDE statement

SBasic supports the use of include files to help you organize and maintain your projects. Include files are simply files containing SBasic source code for commonly-used functions.

You can insert any include file into your SBasic program file by using the INCLUDE statement. SBasic will automatically open the named file, compile the code it contains, then resume compiling your original file.

For example, you might keep a single file of SBasic code for controlling servo motors. You can force SBasic to include the code in this file (call it servo.bas) in your current program file, by using the INCLUDE statement:

 include "servo.bas"

Note the use of double-quotes around the file name.

You can, if you like, supply a full pathname with the file name. For example:

 include "c:\sbasic\inc\servo.bas"

forces SB to search only the supplied path for the file servo.bas. If SB cannot find the file using this path, it will report an error.

You can also, if you wish, set the DOS environment variable SB_INCLUDE to contain the full pathname of a directory dedicated to holding your include files. If SB_INCLUDE exists, SBasic will search that directory for any files named in INCLUDE statements, provided that the file name does not itself contain any path information. If SB_INCLUDE does not exist, SBasic defaults to searching the current directory.

To summarize:

1. If the file name does not contain any path information, SB checks for the existence of a DOS environment variable, SB_INCLUDE. If SB_INCLUDE exists, SB searches the path in that variable for the named file. If SB_INCLUDE does not exist, SB searches the current directory.

2. If the file name contains path information, SB checks only the given path, regardless of the existence of SB_INCLUDE.

Rule 2 above means that you can force SB to search the current directory, even if SB_INCLUDE exists, by using an INCLUDE statement of the form:

 include ".\test.bas"

Here, the backslash serves as path information, forcing SB to search the full
path given in the INCLUDE statement.

Labels

SBasic does not support line numbers, but it does support line labels. Line labels consist of a string of up to 20 characters, ending with a colon (:). Labels must begin with an alphabetic character or an underscore ('_'); remaining characters in a label can also include digits. Any text following a line label definition is ignored.

NOTE: Though legal, starting labels with an underscore can cause obscure problems if you embed assembly language in your SBasic source file. See the section below on ASM and ENDASM, regarding references to SBasic variables from within an ASM block.

Example:
foo: ' define the line label foo

a = 3 ' write a value to A

return ' return from this subroutine

main: ' start of the main program

gosub foo ' execute the subroutine foo

This example shows several important points. Note that labels require a trailing colon only when they are defined, but not when they are referenced. Thus, the GOSUB to FOO doesn't need a colon at the end of FOO.

Also, every SBasic program MUST contain the line label MAIN, even if it contains no other line labels. The startup code that supports SBasic on the target system always jumps to the label MAIN: to begin execution. If your program does not have a MAIN:, the compiler will report an error.

Note that the line label MAIN does not mark the first line of your program's code; it only marks the starting point for execution of your program following reset. You are free to place the line label MAIN anywhere in your file you deem appropriate.

Numeric constants

SBasic supports decimal, hexadecimal, and binary numeric constants. To enter a hexadecimal number in an SB file, preface the number with a '$'. To enter a binary number in an SB file, preface the number with a '%'.

Hexadecimal numbers may contain the characters 0-9, A-F, and a-f. Binary numbers may contain the characters 0 and 1.

The following examples show how to enter different numeric constants:

 foo = 1234 ' assigns decimal 1234 to FOO

 bar = $1234 ' assigns hexadecimal $1234 to BAR

 alpha = %10000 ' assigns decimal 16 to alpha

 cat = $12 + 34 ' adds hex $12 to decimal 34

SBasic also supports ASCII character constants. To enter an ASCII constant, enclose the character in single-quotes. The value used will consist of the binary equivalent of the quoted character. An ASCII constant always consists of eight bits; the upper eight bits of the variable involved will always be 0.

 For example:

 foo = 'a' ' assigns lowercase-A (97) to foo

Variables, arrays, and named constants

SBasic requires you to declare the names of all variables used in your program. You declare variables with the DECLARE command. For example,

 declare foo

creates the SBasic variable FOO.

Variable names must begin with an alphabetic character or an underscore ('_'); remaining characters in a variable name can also include digits.

NOTE: Though legal, starting variable names with an underscore can cause obscure problems if you embed assembly language in your Sbasic source file. See the section below on ASM and ENDASM, regarding references to SBasic variables from within an ASM block.

All variables use two bytes of RAM. The first variable defined is always located at assembler address VARBEG. Variables are assigned addresses based on the order of their declarations.

You must declare a variable before your code can reference that variable. This means that you will usually place all DECLARE statements in a block at the beginning of your SBasic source file.

Note that, unlike traditional Basics, SBasic does not automatically initialize all variables to zero. The value of any variable following system reset is unknown! Your SBasic program must provide any needed variable initialization.

SBasic also supports single-dimension arrays, or vectors. Each element in an array occupies one 16-bit location (two bytes). You use the DECLARE statement to define an array in much the same way you use it to define a simple variable. For example:

 declare foo(5)

defines the array FOO, consisting of five sequential 16-bit locations. The first element in any array is always element zero. Thus, FOO in the above example consists of the five elements named FOO(0) through FOO(4).

You can use arrays anywhere a variable name would be legal, including the left side of an assignment operator. For example:

 declare foo(5)

 foo(2) = 100/n

SBasic allows you to create named 16-bit constants. You create constants with
the CONST statement. For example:

 const bar = 34

creates the SBasic constant BAR with a value of 34. CONST statements may refer to previously defined constants, and may include any number of math operations. CONST statements may not, however, refer to variables, as the contents of variables are not known at compile-time. If you refer to a variable inside a CONST statement, the compiler will report an error.

You must create a constant before your code can reference that constant. This means that you will usually place all CONST statements in a block at the beginning of your SBasic source file.

Note that named constants do not consume any space in the final executable file. They only exist as equates in the assembler source file generated by SBasic.

Data tables

SBasic allows you to store tables of data in ROM, for access by your program at run-time. This technique is used often for storing pre-defined information, such as lookup tables for motor speeds or mathematical functions.

To store 16-bit values in a data table, use the DATA statement. Follow the DATA statement with a list of values to be written into ROM. For example:

 data 0, 1, 2, 3 ' store 4 16-bit values in table

SBasic will generate suitable assembly language source to store the values into code memory at the current location. For the 68hc11, this example would generate assembly language source similar to:

 fdb 0,1,2,3

To store 8-bit values in a data table, use the DATAB statement. Follow the DATAB statement with a list of values to be written into ROM. For example:

 datab $ff, 123, 256, 'z' ' store 4 8-bit values

SBasic will generate suitable assembly language source to store the values into code memory at the current location. For the 68hc11, this example would generate assembly language source similar to:

 fcb 255,123,0,122

Note that the third value appears in the SBasic source as 256, but is converted to 0 in the output source file. This happens because Sbasic only writes the low eight bits of a DATAB list item to the output file.

In order to access items within a DATA (or DATAB) table, you must provide a label at the start of the list. Your program can then use this label to find the first item in the list. For example:

 declare n

 declare sum

 foo:

 data 1,2,3,4

 data 5,6,7,8

 main:

 sum = 0

 for n = 0 to 7

 sum = sum + peek(addr(foo) + n * 2)

 next

 end

This code uses the ADDR() function to locate the start of the data table at label FOO. The list item of interest is found by adding an offset value (N * 2) to the address of FOO. The PEEK() function then reads the 16-bit value stored at that address in the table.

To use the above technique with a DATAB table, you must change PEEK() to
PEEKB() and remove the multiplication by 2 in the offset calculation.

Note that SBasic writes a DATA table in place. That is, the table appears in exactly the same position in the output file as it appears in your SBasic source file.

This means you cannot place a DATA table inside a block of executable code. If you do, the target MCU will eventually try to execute the DATA table as if it were machine code, and your program will crash.

For that reason, put your DATA statements outside of executable blocks. A good place to write DATA statements is immediately before the MAIN: label in your program.

COPY statement

SBasic provides the COPY statement, used to move data from one memory area to another. This proves very handy when you need to initialize a large array. Format of the COPY statement is:

 copy from, to, count
where FROM is the address of the data block, TO is the address of the destination area, and COUNT is the number of BYTES (not variables) to move.

For example, assume you need to initialize the array FOO with a table of data, already existing in a block of DATA statements. You would use statements similar to:

 declare foo(10)

 table:

 data $1234, $5678, $1, $2, $3, $4

 data $5, $6, $7, $8

 copy addr(table), addr(foo), 20

This code uses the ADDR() function to locate the addresses of the TABLE data block and the FOO array, then moves 20 bytes of data from the table to the array.

Note that COPY cannot be used to move data into an area of memory that overlaps the source area. Should you need to perform this operation, use two COPY statements, first to move the data into an intermediate area, then to move it into the final destination area.

 Examples:

 alpha = foo AND $7f ' leaves only low 7 bits of foo

 beta = alpha OR 255 ' sets all low 8 bits of alpha

 gamma = beta XOR $ffff ' inverts all bits in beta

Comparisons

SBasic supports a wide range of comparisons, for use with control structures such as IF-ELSE-ENDIF and DO-LOOP. All comparisons test two 16-bit values and return TRUE if the values meet the comparison test.

=
(equal-to) yields TRUE if the two 16-bit values are equal.

<
(less-than) yields TRUE if the first 16-bit value is less than the

second 16-bit value. This is a signed comparison; $8000 is less than

0.

>
(greater-than) yields TRUE if the first 16-bit value is greater than

the second 16-bit value. This is a signed comparison; 0 is greater

than $8000.

<>
(not-equal-to) yields TRUE if the two 16-bit values are not equal.

><
(not-equal-to) yields TRUE if the two 16-bit values are not equal.

<=
(less-than-or-equal-to) yields TRUE if the first 16-bit value is

less than or equal to the second 16-bit value. This is a signed

comparison.

>=
(greater-than-or-equal-to) yields TRUE if the first 16-bit value is

greater than or equal to the second 16-bit value. This is a signed

comparison.

<*
(less-than unsigned) yields TRUE if the first 16-bit value is less

than the second 16-bit value. This is an unsigned comparison; 0 is

less than $8000 unsigned.

>*
(greater-than unsigned) yields TRUE if the first 16-bit value is

greater than the second 16-bit value. This is an unsigned comparison;

$8000 is greater than 0 unsigned.

SBasic does not allow you to store the result of a comparison in a variable. SBasic also does not allow multiple comparisons in a single operation. Control structures such as IF-ELSE-ENDIF can use only one comparison in the IF-clause.

Control structures

SBasic supports several structures for controlling the flow of your program. Used properly, these control structures can improve the quality of your program design, making your source file easier to read, understand, and debug.

Some of the following control structures allow or require a comparison clause. Such clauses consist of an expression, a comparison operator, and a second expression. The comparison clause is evaluated as your program runs and, depending on the evaluation, control transfers within the control structure.

Example:

 while a < 5

 a = a + 1

 wend

Here, the comparison clause "a < 5" determines whether control remains in the WHILE-WEND loop or transfers to the line following the WEND statement.

All comparison clauses may contain one and only one comparison operator. Multiple comparisons, such as:

 while a < 5 and c-1 = 3

are illegal and will generate compilation errors.
Note also that you do not enclose comparisons within parentheses. Doing so will result in a compilation error.

WHILE-WEND is a conditional loop structure. Control executes all statements between the WHILE statement and the WEND statement for so long as the comparison in the WHILE clause is TRUE. When the comparison becomes FALSE, control exits the loop by transferring to the line following the WEND statement.

Example:

 while a < 500 ' loop while a is less than 500

 a = a + 1 ' increment a

 wend ' end of loop

This example loops for so long as the value in A is less than (unsigned) 500.

Note that WHILE-WEND is obsolete, even though SB still supports it. WHILE-WEND has been replaced by the more flexible DO-LOOP structure. DO-LOOP is a loop structure that may be either conditional or unconditional. Control executes all statements between the DO statement and the LOOP statement. You may include an optional comparison clause in either the DO statement or in the LOOP statement.

Examples:

 do ' start of a do-loop

 gosub process ' do something useful

 loop ' end of loop

The above example will loop forever, since it has no comparison clause. An endless loop is often used as the core of a large program.

 do while a < 500 ' loop while a is less than 500

 a = a + 1 ' increment a

 loop ' end of loop

This example mimics the WHILE-WEND loop above.

 do until a > b ' loop until a is greater than b

 a = a + c/2 ' change value of a

 loop ' end of loop

The above example loops until the value in A is greater (signed) than the value in B.

 do ' start of a do-loop

 a = peekb($1000) ' read a value from an I/O port

 loop while a = 0 ' loop while a equals 0

The above example loops for so long as the value read from the I/O port equals 0.

 do ' start of a do-loop

 a = peekb($1000) ' read a value from an I/O port

 loop until a = $ff ' loop until a equals $ff

The above example loops until the value read from the I/O port equals $ff.

The DO-LOOP provides great flexibility for loop control, because you can control when the comparison occurs in the loop. If you place the comparison in the DO statement, the test is performed before the body of the loop is executed. By placing the comparsion in the LOOP statement, you can force the body of the loop to execute before the comparison is performed.

The FOR-NEXT structure creates an iterated loop. This means that a selected variable, called the index variable, controls exactly how many times the loop is executed. Control executes all statements between the FOR statement and the NEXT statement until the value in the index variable EXCEEDS a specified limit. The index variable is always tested at the top of the loop. The comparison is signed for the usual FOR-NEXT loop, although you can use an unsigned comparison if necessary.

 Example:

 for n = 1 to 10

 a = a + n

 next

Here, the variable N starts with a value of one. The statement inside the loop is executed ten times, with N incrementing each time the NEXT statement executes. Eventually, N holds the value 11 when the FOR statement executes. At this point, the statement inside the loop is not executed. Instead, control passes directly to the statement following the NEXT statement.

Sometimes you must use a limit larger than $7fff. Since SBasic uses 16-bit math, numbers larger than $7fff are treated as negative in signed comparisons. Therefore, the following example:

 for n = 1 to $9000

 a = a + 1

 next

will exit immediately, as SBasic treats $9000 as a negative number, and 1 is already greater than a negative number.

To change the above example to use an unsigned comparison, use the TO* operator. The above example becomes:

 for n = 1 to* $9000

 a = a + 1

 next

This loop will execute the expected $9000 times.

Remember to leave room on your limit value so that the index variable can actually exceed the limit. For example:

 for n = 1 to* $ffff

 a = a + 1

 next

This loop will never end, since the value of N can never exceed the limit of $ffff.

Note that it is legal (but not good practice) to modify the index variable inside the loop.

Normally, the index variable increments by one each time control reaches the bottom of the loop. You can change the value by which the index variable increments with the STEP modifier.

 Example:

 for n = 1 to 10 step 2

 a = a + n

 next

Here, the variable N starts with a value of one, and increments by two each time control reaches the NEXT statement. Thus, N takes on the values 1, 3, 5, 7, 9, and 11. When N becomes 11 at the top of the loop, control immediately passes to the statement following the NEXT statement.

The SELECT statment marks the beginning of a SELECT-CASE control structure. The SELECT-CASE structure allows your code to select one option out of a list, based on the value of an argument, called the selector. Only the CASE clause associated with the matching selector value, if any, is executed.

The general format of a SELECT-CASE structure is:

 select foo ' use value of FOO as selector

 case 123 ' if FOO = 123...

 . ' execute this code

 . '

 endcase ' end of case 1

 case 456 ' if FOO = 456...

 . ' execute this code

 . '

 endcase ' end of case 2

 endselect ' end of select structure

This structure replaces the older ON-GOTO construct, and allows creation of code that is easier to debug and maintain.

The SELECT-CASE structure supports variations for handling special cases. For example:

 select foo + 3*j ' use expression for selector

 case 1 ' if selector = 1...

 case n ' or N...

 case 'X' ' or ASCII character X...

 foo = n + 3 ' change FOO

 endcase ' end of first case

 case 2 ' if selector = 2...

 case 3 ' or 3...

 foo = n + 2 ' change FOO

 endcase ' end of second case

 foo = 4 ' default action...

 endselect

This example shows the use of multiple CASE statements within a CASE clause. This feature comes in handy if your code must perform the same function for a group of selector values.

This example also shows the method for performing a default action. The line FOO = 4 executes if no CASE clause matches the selector value. Note that the default clause does not require an initial CASE statement or a terminating ENDCASE statement.

Also, this example shows that the selector value for this example is an expression. You can use any valid algebraic expression as the selector value in a SELECT statement.

Note, however, that CASE statements only accept a numeric value, a constant, or a variable as an argument. You cannot use an algebraic expression as the argument to a CASE statement! Doing so will generate a compiler error.

Finally, this example shows that you can change the selector value within a CASE clause, without affecting the actions of the SELECT statement. This is because control passes to the ENDSELECT statement immediately after executing the code in any CASE clause. Thus, any following CASE clauses do not evaluate the changed selector value.

The EXIT statement allows you to leave a looping structure before the terminating condition, if any, is reached. Control automatically jumps to the end of the currently active looping structure.

You can also use EXIT to leave a SELECT-CASE structure. In this case, control will jump to the corresponding ENDSELECT statement.

 Example:

 for n = 1 to 10

 if n = 5

 exit

 endif

 next

Here, control automatically leaves the FOR-NEXT loop when N equals 5.

Note that you can use EXIT inside DO-LOOP, WHILE-WEND, FOR-NEXT, and SELECT-CASE structures. You cannot use EXIT outside of these looping structures.

The IF-ENDIF structure selectively executes a block of statements, depending on a comparison at the beginning of the structure. If the comparison is TRUE, the statements are executed, otherwise they are not.

 Example:

 if a = $12

 b = b * 2

 endif

Here, the middle statement is executed only if the value of A is $12.

You can use the ELSE modifier to provide greater flexibility to the IF-ENDIF structure. Statements between the ELSE statement and the ENDIF statement are only executed if the comparison in the IF statement is FALSE.

 Example:

 if a = $12

 b = b * 2

 else

 b = -b

 endif

Here, B is set to -B only if A is not $12.

Note that you do not include parentheses around the comparison clause of any structure. Doing so will cause SBasic to report an error during compilation.

You can also use the ELSEIF modifier to simplify nested IF-ENDIF structures. Consider the following example, in which three different conditions must be tested:

 if a = $12

 n = 1

 else

 if foo = w+2

 n = 3

 else

 if bar = a+w

 n = 5

 endif

 endif

 endif

This type of test sequence can be difficult to decipher. Using the ELSEIF modifier simplifies the structure:

 if a = $12

 n = 1

 elseif foo = w+2

 n = 3

 elseif bar = a+w

 n = 5

 endif

Note that the ELSEIF statement requires the same type of comparison clause used by the IF statement.

Functions and statements

SBasic supports several functions and statements useful for embedded control applications.

Generally speaking, a function returns a value, while a statement does not. All functions contain parentheses, though not all functions actually need an argument inside the parentheses.

All statements, however, appear without parentheses.

The SWAPB function exchanges the two bytes of the 16-bit argument and returns the new value. It does not alter the original argument. This operation is useful for sending both bytes of a variable to a byte-wide I/O port, such as the 68hc11's SPI.

 Example:

 j = $1234 ' prepare j

 pokeb spdr, swapb(j) ' send $12 to SPI

The RSHFT and LSHFT functions shift the 16-bit argument one bit position, either right or left. This operation can be used as a fast multiply or divide by 2.

 Example:

 n = %11000011 ' initial value of n

 n = rshft(n) ' n now holds %01100001

 n = lshft(n) ' n now holds %11000010

Note that the shift functions move the argument one bit in the specified direction, moving a 0 bit into the vacated position. Thus:

 x <- xxxxxxxxxxxxxxx <- 0 = LSHFT()

 0 -> xxxxxxxxxxxxxxx -> x = RSHFT()

The RROLL and LROLL functions rotate the 16-bit argument one bit position, either right or left. This operation can be used as part of a pulse-width modulation (PWM) function.

 Example:

 n = %1111 ' initial value of n

 n = rroll(n) ' n now holds %1000000000000111

 n = lroll(n) ' n now holds %0000000000001111

Note that the roll functions move the argument one bit in the specified direction, placing the rotated bit into the position at the opposite end of the word. Thus:

 +------<-------+ +------>-------+

 | | = LROLL() | | = RROLL()

 xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx

The PEEK function returns the 16-bit value stored in a specific address. This is the usual function for reading 16-bit I/O ports.

 Example:

 a = peek($1000) ' get 16-bit value from address $1000

You can make your use of PEEK easier to understand if you combine it with named constants defined with the CONST statement.

 Example:

 const porta = $1000 ' define address of port A

 a = peek(porta) ' get 16-bit value at port A

The PEEKB function returns the 8-bit value stored in a specific address. This is the usual function for reading 8-bit I/O ports.

 Example:

 a = peekb($1020) ' get 8-bit value from address $1020

Recall that the = (assignment) operator writes a 16-bit value to a variable. In the case of the PEEKB function, the top eight bits of the variable will always be written as 0. Thus, reading a value of $45 in the above example results in storing $0045 in variable A.

You can make your use of PEEKB easier to understand if you combine it with named constants defined with the CONST statement.

 Example:

 const portb = $1020 ' define address of port B

 a = peekb(portb) ' get 8-bit value at port B

The POKE statement writes a 16-bit value to a specific address. This is the usual statement for writing data to 16-bit I/O ports.

Example:

 poke $1000, a ' write value in A to address $1000

Note the difference in syntax between the PEEK function and the POKE statement; PEEK uses parentheses around the address argument, while POKE does not use parentheses.

You can make your use of POKE easier to understand if you combine it with named constants defined with the CONST statement.

 Example:

 const porta = $1000 ' define address of port A

 poke porta, a ' write value in A to port A

The POKEB statement writes a 8-bit value to a specific address. This is the usual statement for writing data to 8-bit I/O ports.

 Example:

 pokeb $1000, a ' write low 8 bits in A to addr $1000

Note the difference in syntax between the PEEKB function and the POKEB statement; PEEKB uses parentheses around the address argument, while POKEB does not use parentheses.

You can make your use of POKEB easier to understand if you combine it with named constants defined with the CONST statement.

 Example:

 const porta = $1000 ' define address of port A

 pokeb porta, a ' write low 8 bits in A to port A

The WAITWHILE and WAITUNTIL statements provide high-speed testing loops, for use with 8-bit I/O ports. You can use these single statements to replace larger, less efficient wait-loops built from the PEEKB function.

The WAITWHILE statement loops while the contents of an 8-bit port, ANDed with an 8-bit mask, yields a non-zero result. The WAITUNTIL statement does the opposite; it loops UNTIL the contents of an 8-bit value, ANDed with an 8-bit mask, yields a non-zero result.

 Example:

 waitwhile $1000, $40 ' wait while bit 6 of $1000 is high

This statement repeatedly reads the 8-bit value at address $1000 and ANDs that value with $40, for so long as the result is not zero. When the result equals zero, the loop terminates.

 Example:

 waituntil j, n ' wait until mask of value at j is not 0

This statement repeatedly reads the 8-bit value at the address contained in variable J and ANDs that value with the low eight bits in variable N, until the result is not zero. When the result is not zero, the loop terminates.

You must be aware of a few characteristics of the WAIT loops. The first argument is always treated as an address, even if you use a variable. In the second example above, the loop does not test the value in J, it uses the value in J as the address to test.

Second, the WAIT statements always test an 8-bit address; you cannot test a 16-bit I/O port with these statements.

Also, the WAIT statements always use the low eight bits of the mask argument. Thus, if you specify a variable as the mask value, the WAIT statements will automatically use just the low eight bits in the loop test.

Finally, you can improve the speed of the generated code by using only constants, numbers, or variables as arguments to these statements. Using an argument that contains math or logical operations will generate larger, slower test loops.

 Example:

 waitwhile j+4, n/q ' this runs slowly

will run slowly, since the two math operations will be performed inside each test loop. A better way to write this is:

 adr = j+4 ' calc the address

 mask = n/q ' calc the mask

 waitwhile adr, mask ' now do the loop

The ADDR function returns the address of a specified label or variable.

 Example:

 a = addr(MyLabel) ' put address of MyLabel in A

You can use the ADDR() function to locate the first element in an array. To do this, simply leave off the parentheses when supplying the array's name. For example:

 declare foo(5)

 a = addr(foo)

causes A to contain the address of FOO(0).

You cannot use ADDR() to calculate the address of a selected array element; if you include a subscript after the array name, the compiler will report an error in the ADDR() function.

This isn't really a problem, though, since all array elements occupy two bytes. For example:

 a = addr(foo) + n * 2

causes A to contain the address of FOO(N). It does this by finding the address of FOO(0), then adding two to that address for each element named in N. Thus, if N = 2, A will hold the address of FOO(2).

See the discussion below on the INTERRUPT statement for a detailed example of using the ADDR function.

SBasic supports a limited PRINT statement. SBasic's PRINT statement sends characters to a default output device, based on the target system. For the 68hc11, this is the Serial Communications Interface, or SCI. For the 68hc12, this is the first of the asynchronous serial ports, equivalent to the SCI.

SBasic supports the following variations of the PRINT statement:

 print "a constant string followed by a CR"

 print "a string followed by a space";

 print "a string followed by a TAB character",

 print ' prints a blank line

 print foo ' prints the value of foo

 print "FOO ="; foo ' prints a string, then a value

 print a; b; c ' prints three values

Additionally, SBasic supports two statements similar to PRINT that print values in slightly different formats. The PRINTU statement prints any values in unsigned format and the PRINTX statement prints any values in hexadecimal characters. The PRINTU and PRINTX statements behave exactly the same as the PRINT statement with regard to spacing, tabs, and quoted strings.

For example:

 print "-1 = "; -1 ' prints -1 = -1

 printu "-1 = "; -1 ' prints -1 = 65535

 printx "-1 = "; -1 ' prints -1 = FFFF

SBasic also supports the C language's escape character for embedding special characters within a PRINT string. You can embed any of the following special characters inside a PRINT string:

 "\n"
inserts a newline ($0a)

 "\r"
inserts a carriage-return ($0d)

 "\f"
inserts a form-feed ($0c)

 "\a"
inserts an alert ($07)

 "\b"
inserts a backspace ($08)

 "\t"
inserts a horizontal tab ($09)

 "\v"
inserts a vertical tab ($0b)

 "\\"
inserts a backslash

For example:

 print "Hello, world!\n\r\a";

prints the string "Hello, world!" followed by a line-feed, a carriage-return, and a bell.

Run-time support for SBasic's PRINT statements relies on several library files, included with the SBasic distribution. These files are automatically added to the assembler source file created by SBasic, whenever your program invokes a variation of the PRINT statement.

You may modify the PRINT statement library routines, if desired, to create support for other output devices. However, you must keep the names of all subroutines defined inside a library file unchanged.

This is because the assembler source created by SBasic uses fixed names for library functions. If you change the names of the library routines, the assembler will report an undefined label error when it tries to find the library subroutines.

Note that these library files are only included if your code uses a PRINT statement. You can create smaller executables by eliminating any use of the PRINT statement, if appropriate.

NOTE: Your code must issue any setup instructions necessary to prepare the default I/O port for use with the PRINT statements. For details on setting up the 68hc11's SCI, consult the section below, "Character I/O on the 68hc11."

SBasic supports a version of the INKEY() function. You can use INKEY() to receive characters from a default input device, based on the target system. For the 68hc11, this is the SCI. For the 68hc12, this is the first asynchronous serial port, similar to the SCI.

Unlike the INKEY() function in traditional Basics, SBasic's version does not expect or allow an argument.

If no character was received from the console, INKEY() returns 0. If a character was received, INKEY() returns a value containing the character in the low eight bits; additionally, INKEY() sets bit 8 of the returned value. Setting bit 8 allows your program to distinguish

between receiving a NULL (returned value = $0100) and not receiving any character (returned value = $0).

For example:

 do

 n = inkey()

 loop while n = 0

 n = n and $ff

This code loops until INKEY() returns a valid character from the console. It then strips off the upper byte, leaving only the received character in N.

INKEY() sets bit 8 to permit receiving any character, including NULLs, from the console input device.

The actual code that supports the INKEY() function appears in the library files INKEY11.LIB (for the 68hc11) and INKEY12.LIB (for the 68hc12). You can edit the supplied INKEYxx.LIB source file to support using INKEY() with other devices. Take care, however, to ensure your new version of INKEY() preserves the register usage of the original.

NOTE: Your code must issue any setup instructions necessary to prepare the default I/O port for use with the INKEY()function. For details on setting up the 68hc11's SCI, consult the section below, "Character I/O on the 68hc11."

Sbasic provides the OUTCH statement, used to send an 8-bit character directly to the console. This statement provides the same functionality as the usual Basic phrase:

 PRINT CHR$(N);

only the OUTCH statement takes much less space, both in the source file and in the final executable.

For example:

 outch n+2

This example adds 2 to the current value in variable N, then sends the low eight bits of the sum directly to the console device as an ASCII character.

The actual code that supports OUTCH appears in the library files OUTCH11.LIB (for the 68hc11) and OUTCH12.LIB (for the 68hc12). You can edit the supplied OUTCHxx.LIB source file to support using OUTCH with other devices. Take care, however, to ensure your new version of OUTCH preserves the register usage of the original.

NOTE: The routine contained in OUTCHxx.LIB is used by all console output statements, including all variations of PRINT. Changing the routine in OUTCHxx.LIB will also change the behavior of all variations of PRINT.

OUTCH only sends the low eight bits of its argument to the console. Therefore, OUTCH can be used directly with the value returned by INKEY(), as shown:

 do

 n = inkey()

 loop while n = 0

 outch n

This code loops until INKEY() returns a non-zero value for N, indicating that a character was entered at the console. The value in N is then sent back to the console as an echo. Since OUTCH ignores the upper byte in N, the character echoes properly; your code does not need to alter the upper byte of N before calling OUTCH.

NOTE: Your code must issue any setup instructions necessary to prepare the default I/O port for use with the OUTCH statement. For details on setting up the 68hc11's SCI, consult the section below, "Character I/O on the 68hc11."

The MIN and MAX functions return the smaller or greater of two arguments, respectively. Both functions use signed comparisons. You must supply two arguments for either function, with a comma separator between arguments. You may use either constants or algebraic expressions for either or both arguments. For example:

 print min(-4, 3); "is smaller than"; max(-4, 3)

prints the correct result, as a signed comparison between -4 and 3 will properly show that -4 is smaller than 3.

The MINU and MAXU functions perform the same operations as MIN() and MAX, except these functions use unsigned comparisons. For example:

 print minu(-4, 3); "is smaller than"; maxu(-4, 3)

will print apparent nonsense, as -4, taken as an unsigned number, is larger than 3.

Subroutines, GOSUB, and USR()

SBasic supports the traditional Basic concept of subroutines. A subroutine is a block of SBasic statements that can be invoked, or called, from elsewhere in the SBasic program. After these statements complete execution, control returns to the calling section.

A subroutine contains a line label marking the start of the subroutine, and at least one RETURN statement, which transfers control back to the calling section.

The calling section of SBasic code invokes, or calls, a subroutine by means of the GOSUB statement.

Example:

 main:

 do ' start of an endless loop

 gosub foo ' call subroutine FOO

 loop ' loop forever

 foo: ' start of subroutine FOO

 a = a + 1 ' increment A

 return ' return to caller

This example, while not very useful, shows how a subroutine is invoked and how it is defined. Note that you can use a GOSUB to a subroutine before that subroutine is defined in your code.

Note that code inside a subroutine has full access to all variables defined with the DECLARE statement. Changes made to a variable from inside a subroutine remain in effect when control returns from that subroutine.

All GOSUBs push a return address onto the target's return stack. SBasic's data stack resides a fixed distance below the return stack. Excessive nesting of GOSUBs could clobber values on the data stack.

The address of the subroutine invoked must be either a label or a variable; you may not use algebraic expressions or functions as addresses for a GOSUB statement.

GOSUBs may pass one or more arguments to the called subroutine. Your code should include the arguments after the name of the subroutine invoked. For example:

 main:

 do ' start an endless loop

 gosub foo, 3, j ' call FOO with two arguments

 loop ' loop forever

SBasic automatically pushes all arguments onto the data stack, then calls the named subroutine as above. Code in the subroutine can use the data stack operators, such as PICK(), to test or change the arguments.

Pay careful attention to the order in which SBasic pushes the arguments; they are pushed in the order given. For example:

 gosub foo, 3, j

 ^ ^

 | +--------- This argument is on top of data stack

 +------------ This argument is next on data stack

This method of passing arguments means that a subroutine may be passed different numbers of arguments at any time. SBasic performs no checks to see if you have passed the correct number of arguments.

SBasic similarly does not "clean up" the data stack before returning control to the calling routine. Your code must update the data stack, if necessary, to remove any arguments. You can choose to do this within the called routine, or in the calling routine after the subroutine invocation. Regardless of where you perform this cleanup, it must be done or your program will eventually corrupt the data stack, likely crashing.

Note that GOSUBs make no allowance for the called routine returning a value. Thus, code that uses a GOSUB to invoke a subroutine must rely on global variables to check the results of the GOSUB. This can result in awkward code that can prove difficult to maintain.

To return a value to the calling routine, use SBasic's USR() function. The USR() function is similar to GOSUB, in that it calls an Sbasic subroutine. It can also include one or more arguments.

Unlike GOSUB, however, USR() returns a value from the called routine for later use. For example:

 n = usr(foo, 3) ' call FOO, put returned value in N

 j = usr(bar) ' call BAR with no arguments

Note the difference between USR() and GOSUB. The USR() function, like any other SBasic function, requires parentheses around its list of arguments.

The address of the subroutine invoked must be either a label or a variable; you may not use algebraic expressions or functions as addresses for a USR() function.

USR() functions use the data stack in exactly the same manner described above for the GOSUB statement. Also, the first argument in the USR() list is always the address of the called subroutine.

The RETURN statement

SBasic's RETURN statement serves two functions. You can use it to return control from a subroutine, and you can use it to return control from an interrupt. For details on processing interrupts, see the Interrupts section below.

When used in main-line code (code not in an interrupt service routine), RETURN generates the proper code to return control from a subroutine. For the 68hc11 and 68hc12 MCUs, this is an RTS instruction.

Note that SBasic does not check to see if you are using a RETURN statement after a label. A RETURN statement always generates a ______ Return-from-Subroutine instruction in main-line code, regardless of where it occurs.

When used in an interrupt section, RETURN generates the proper code to return control from an interrupt or exception. For the 68hc11 and 68hc12 MCUs, this is an RTI instruction.

Additionally, a RETURN statement in main-line code may optionally include a value that will be returned to the calling routine. For example:

 return ' this statement just returns

 return j+3 ' this statement returns a value

You may include a RETURN statement with a returned value at any point in your code, even inside an interrupt section. However, the returned value will only have meaning if it occurs in main-line code, and even then only if control is returning to a USR() invocation. Returned values to a GOSUB are ignored, as are returned values from an interrupt section.

Interrupts

SBasic provides support for processing interrupts on the target system.

You can write interrupt service routines (ISRs) directly in SBasic, rather than having to drop down into assembly language for the target machine. However, you must declare a block of SBasic code as an ISR by using the INTERRUPT statement.

The INTERRUPT statement can accept a single argument, which is the address on the target system to use as an interrupt vector. Sbasic will determine the address of the ISR code, then write that address to the vector address you specify.

Later, when your program is running on the target system, an interrupt will cause control to transfer to the address stored in the vector address. This in turn starts execution of your SBasic routine.

Example:

 interrupt $fff0 ' use $fff0 as the interrupt vector

 a = peekb(porta) ' read 8 bits from port A

 end ' return from the interrupt

Given the above example, an interrupt that uses $fff0 as its vector will cause control to jump to the statement containing the PEEKB function. This small program will read a value from port A, then return from the interrupt.

Note that your SBasic routine does not get written to address $fff0; only the address of your routine gets written there. If necessary, examine the code created by the compiler to help understand how Sbasic interrupts work.

You must use an END statment to terminate all ISR code following an INTERRUPT statement. When it processes this END statement, Sbasic compiles the proper Return from Interrupt instruction for the target system.

You sometimes need more than one exit from an ISR. If so, simply use the RETURN statement to exit the ISR. SBasic will automatically compile the proper instruction for leaving the interrupt section.

Example:

 interrupt $fff0

 if n = $66

 return

 endif

 n = $10

 end

In the above example, control leaves the ISR immediately if N contains the value $66. If not, then N is changed to $10 and control leaves the ISR through the normal END statement.

In rare cases, you may need to combine a line label with the INTERRUPT statement. This can happen in some variations of the 68hc11 MCU. The 'a1 variation, for example, often contains a form of the BUFFALO monitor in on-chip ROM. BUFFALO takes full control of the interrupt vectors, so SBasic cannot modify any of the vectors.

Instead, BUFFALO expects your program to use specific addresses in on-chip RAM as jump vectors to reach your ISR code.

To get around this obstacle, you must combine a line label with use of the ADDR function.

 Example:

 interrupt ' note that no address is used!

 rtiisr:

 if u <> 0 ' if u is not yet 0

 u = u - 1 ' decrement u

 endif

 pokeb tflg2, $40 ' rearm interrupt

 end

 main:

 pokeb $eb, $7e ' write a jump instruction

 poke $ec, addr(rtiisr) ' write addr of ISR

Here, the code in MAIN modifies the RAM addresses used by BUFFALO. It stores a JMP instruction ($7e) followed by the address of the jump target.

When the RTI interrupt occurs, BUFFALO will jump to address $eb. The code left there by MAIN will in turn pass control to the ISR at RTIISR, where the actual interrupt processing occurs.

Note that the above example does not require an argument to the INTERRUPT statement. This means SBasic will not create an entry in the target's vector area. The above code, following the label MAIN, must be used to provide the target processor with access to the ISR.

If necessary, you can use the /i option on SB's command line to surpress generation of all interrupt vectors, including the reset vector. You can use this option if the target MCU already contains firmware for activating your program following reset. Examples of such a situation include a 68HC11A1 with BUFFALO already in ROM, and the 68HC912B32 with its on-chip bootloader.

You can enable or disable system-wide interrupts by using the INTERRUPTS statment. This statement takes a single argument that is ON to enable interrupts or OFF to disable them. This statement only affects system-wide interrupts, and its exact implementation varies, based on the target system.

For the 68hc11 and 68hc12 MCUs, INTERRUPTS ON is compiled into a CLI instruction and INTERRUPTS OFF is compiled into a SEI instruction.

 Example:

 INTERRUPTS ON ' turn on system-wide interrupts

The ORG statement

Normally, SB generates all code so it occupies sequential addresses on the target machine, starting at the address named CODEBEG. You can think of this range of addresses as SB's original code section.

If necessary, you can force SB to compile code at other addresses, by using the ORG statement. The ORG statement takes one of three forms:

 org <addr> or

 org code or

 org <addr> code

where <addr> is the address where you want subsequent SB code to compile. You can think of these other address ranges as alternate code sections. For example:

 org $200

causes subsequent SB code to compile in an alternate section, starting at address $200. SB will continue to compile all code into sequential addresses, until you end the program or change the compile origin with another ORG statement.

If you use the keyword CODE as the argument to an ORG statement, SB resumes compiling at the last address in the original code section.

Perhaps a larger example will clarify this. Assume that the following program was compiled with a CODEBEG address of $8000:

 main:

 n = 14 ' this code compiles at $8000

 org $400 ' change the origin

 table1: ' use a label at new origin

 datab 0,1,2,3 ' this code compiles at $400

 org $500 ' change the origin

 interrupt $fff0 ' RTI ISR compiles at $500

 end ' bogus ISR, just for example

 org code ' return to original code section

 j = addr(table1) ' sets j to $400

 end

You may use as many ORG statements, and change between alternate code sections and the original code section, as often as you want.

In rare cases, you might need to change the address of SBasic's code section inside your program. Early versions of the 68hc912b32 contained an on-chip bootloader that took over the vector area. To force the vectors to appear at the proper locations, and also to force the library routines to compile in the correct locations, I had to use the third variation of the ORG statement above.

For example, I compiled the following portions of code using a /c option of $f700:

 org $8000 code ' redefine code section here

 main:

 n = 14 ' this is the mainline code

 ... ' rest of mainline code goes here

 org $f7e8 ' address of RTI vector

 asm ' switch to assembly language

 jmp _rtiisr use an assembly JMP instruction

 endasm ' back to SBasic

 org code ' return to code section

 end ' end of program

The /cf700 option started compilation with the code section at $f700. This caused SBasic to write the startup library code at $f700. The ORG $8000 statement then moved MAIN down to $8000 and also caused the code section to move to that address. The rest of the mainline code (not shown here) compiled from there.

Next, the ORG $f7e8 let me write a JMP instruction into the bootloader's vector area for use by the RTI interrupt. Finally, the ORG CODE statement switched back to the code section, now somewhere above $8000.

This last step is important. SBasic automatically switches to the code section before adding any library files at the end of the compilation. If I hadn't moved the code section to $8000, Sbasic would have added the library files at $f700, which was the original code section. The resulting executable file would have failed.

The data stack

SBasic supports a data stack, for temporary storage of data. For the 68hc11 and 68hc12 MCUs, the data stack resides about 32 bytes below the return stack. Both stacks grow downward (towards lower addresses) as items are pushed onto them.

Do not confuse the use of these two stacks. The return stack holds all data used by the target MCU in servicing interrupts and subroutine calls. Items placed on the return stack are not currently accessible by your SBasic code.

The data stack, however, contains items explicitly placed by your program. You are free to use the data stack in any manner you like, and items placed on the stack will remain until your code specifically removes or modifies them.

You can push items onto the data stack by using the PUSH statement. The PUSH statement takes a single argument; the 16-bit value of that argument will be pushed onto the data stack.

 Example:

 push n+5

adds 5 to the current value of N and pushes the sum onto the data stack. The value in N does not change.

The size of the data stack depends on where you place the return stack, using the /S option. The data stack will grow downward in memory until it runs into whatever values, if any, lie below it. There are no runtime checks for pushing too many items onto the data stack.

You can pull (or pop) items from the data stack by using the POP() function. POP() returns the top (most recent) item pushed onto the data stack.

 Example:

 n = pop() + 5

pops the top item off the data stack, adds 5 to that value, and stores the sum in variable N.

There are no runtime checks for popping too many items from the data stack. The data stack resides below the return stack, and popping items causes the data stack pointer to move upwards in memory. If you pop more items from the data stack than you pushed onto it, you risk corrupting the return stack. This in turn will cause your program to crash on a later RETURN statement.

You can also use the PULL() function to remove items from the data stack. PULL() works exactly the same was as the POP() function; it is simply a synonym for POP().

You can copy a value from within the data stack by using the PICK()function. PICK() locates a specific item within the data, and returns that value.

 Example:

 n = pick(2)

copies the third item in the data stack into N. The size of the data stack does not change, and the value in the third item does not change.

Note that the item on the top of the stack is item 0; the second item is item 1. SBasic does not check to see how many items are actually on the data stack. If you supply an argument to PICK() that is larger than the current data stack, SBasic will return a bogus but legal value.

You can alter a value within the data stack by using the PLACE statement. PLACE stores a 16-bit value into a specified item in the data stack.

 Example:

 PLACE 2, n

stores the value in N into the third item in the data stack. The value in N does not change, and the size of the data stack does not change.

SBasic does not test the actual size of the data stack before executing the PLACE statement. Using PLACE to modify an item beyond the actual data stack will corrupt that location in memory and could crash your program.

You can combine PICK() and PLACE to create 16-bit variables local to a section of code, such as a subroutine. For example:

 foo:

 do

 place 0, pick(0) + 1 ' increment the item

 loop while pick(0) < 5 ' loop until it hits 5

This code uses an item, already stored on the data stack by previous code, as a local variable. Changes to this variable occur only in the data stack, not in a DECLAREd variable.

In some cases, you want to remove items from the data stack without actually using the removed values. The DROP statement serves this purpose. It takes a single argument, which gives the number of items (NOT BYTES) to remove from the data stack. For the 68hc11, DROP removes two bytes for each value. For example:

 drop 3 ' remove 6 bytes on a 68hc11

SBasic does not check that you are DROPping a valid number of items from the stack. If you DROP too many items, you risk corrupting the return stack, located immediately above the data stack on a 68hc11. If this happens, your program will likely crash.

The SWAP statement makes it easier to manipulate items on the data stack. It exchanges the values in the topmost and second cells on the data stack.

 Example:

 push 2 ' first push a 2

 push 3 ' stack has 3, then 2

 swap ' now stack has 2, then 3

Note that SWAP does not alter the size of the data stack, only the contents of the top two cells on the stack. SWAP always uses 16-bit cells.

Do not confuse the functions of SWAPB, which exchanges bytes within a variable, and SWAP, which exchanges cells on the data stack.

ASM and ENDASM

The ASM and ENDASM statements allow you to imbed assembly language source inside your SBasic program. Assembly language source lines between these two statements (with one exception) are not processed by SB; instead, they are passed directly to the output file for subsequent assembly.

This feature allows you to drop down into assembly language when necessary, should you need to write code that must run faster or take up less space. Additionally, imbedded assembly language gives you direct access to registers on the target system not currently supported by SBasic. For example, you can gain access to the 68hc11's hardware stack register (S) by using imbedded assembly language.

The following example shows how to imbed 68hc11 assembly language:

 foo:

 asm ' switch to assembly language

 ldx #$1000 point x at i/o regs

 ldd $0e,x get 16-bit counter TCNT

 std _time save in variable TIME

 endasm ' switch back to SBasic

 return ' and return

This example shows an SB routine named FOO that uses imbedded assembly language to access the 68hc11's TCNT register. The value read from TCNT is stored in the SBasic variable TIME. The example then uses the ENDASM statement to switch back to SBasic, where the RETURN statement returns control to the calling routine.

Note that you will generally use an SBasic label at the start of an assembly section; other SBasic routines can use this label to pass control to your assembly section. Note also that imbedded assembly language lines can (and should) have comments appended to them.

With one exception, all source lines between an ASM and an ENDASM statement are passed unaltered to the output file for processing by the assembler. Thus, you cannot use SBasic statements or functions within an assembly section. Such statements or functions would be processed by the assembler, not by SBasic, and will result in assembler errors.

The sole exception to the above involves an underscore character. As shown in the example above, you can refer to SBasic variables, constants, or labels by prepending an underscore to the name. Before SBasic passes each assembly source line to the output file, it scans the line for any underscores. If SB detects an underscore, the following characters are parsed and tested against SBasic's list of

known variables, constants, and labels. If found, the underscore and following characters are replaced with SBasic's internal name. Since this internal name is what the assembler will use to resolve operands, the SBasic name will be understood by the assembler. In the above example, SBasic would convert the string "_time" to something like "var009."

SBasic can handle multiple occurences of underscores within a source line. For example, it will properly resolve a line such as:

 ldx #_main+2*_cons0 uses a label and a constant

If SBasic cannot resolve the character string following an underscore into the name of a variable, constant, or label, the line is passed unchanged to the output file. This will usually result in an assembler error message, but it will not cause an SBasic error! This it will not cause an SBasic error! means that if you use inline assembly language, you must check not only for SBasic errors but for assembler errors as well. SBasic will not know that the assembler could not resolve the label.

It is easy to lose track of which addresses are known to SBasic and which are known to the assembler. Remember that labels known to SBasic are automatically converted to an internal label before Sbasic writes them to the output file. Thus, your SBasic source may refer to a label WAMPUM, but it will be converted to something like lbl010 before the assembler sees it.

To refer to standard assembler labels such as I/O registers, make sure that you make them known to the assembler by including them within an ASM section. The above example could have been written:

 foo:

 asm ' switch to assembly language

 iobase equ $1000 address of I/O regs

 tcnt equ $0e offset to TCNT reg

 ldx #ioregs point x at i/o regs

 ldd tcnt,x get 16-bit counter TCNT

 std _time save in variable TIME

 endasm ' switch back to SBasic

 return ' and return

The ASMFUNC statement

The ASMFUNC statement gives SB access to labels and routines within a block of assembly language code. See the section above on the ASM statement. The format for the ASMFUNC statement is:

 asmfunc foo

This statement tells the SBasic compiler that subsequent references to the label FOO must be passed to the output file as FOO, not as a converted label.

ASMFUNC adds tremendous power to SB, allowing you to write your own SBasic extensions in assembly language, then use them as if they were an integral part of SB. For example:

 declare stack ' declare a variable

 asmfunc getstk ' define an asm entry point

 main: ' enter here

 stack = getstk(0) ' get addr of return stack

 do loop ' silly loop

 asm ' switch to assembly language

 getstk ' entry point to getstk()

 tsx ' move addr of stack to x

 xgdx ' move addr of stack to d

 rts ' return addr of stack

 endasm ' back to SBasic

 end

Here, the ASMFUNC statement tells SB that references to the label GETSTK are to be passed unchanged to the output file. Thus, when the SB code invokes the function GETSTK() to get the current hardware stack address, SB generates a JSR to GETSTK, not a JSR to an address with an internal SB label.

The actual code for subroutine GETSTK exists in the ASM block. GETSTK moves the stack pointer into the 68hc11's D-register and returns. The code generated by SB then stores the D-register into variable STACK and falls into the silly loop at the end of the program.

This example shows how to set up an ASMFUNC statement and its associated assembly language. It also shows how to use an ASMFUNC label as a function. In this case, you must adhere to SBasic's general rules regarding functions. Functions, which return a result in the D-register, must be called with an argument. Since the GETSTK routine doesn't need an argument, anything will work, but you must include an argument of some kind. That's why I show an argument of 0 for GETSTK.

You can also use ASMFUNC to create statements. Remember that an SBasic statement doesn't return a value, but simply performs an operation. For example:

 asmfunc setstk ' define an asm entry point

 main: ' enter here

 setstk $0060 ' change hardware stack addr

 do loop ' silly loop

 asm ' switch to assembly language

 setstk ' entry point to setstk

 tsx ' get current stack addr

 ldx 0,x ' get return addr for SB in x

 jsr _pull ' get new stack addr in d

 xgdx ' new stack in x

 txs ' move new stack addr to s

 xgdx ' put return addr back in x

 jmp 0,x ' return through x

 endasm ' back to SBasic

 end

This example is more advanced and shows how to change the return stack pointer from inside SBasic. The SB program uses the SETSTK statement to set the return stack pointer to $60, essentially moving the hardware stack. The tricky part here is that SB will execute this statement via a JSR to SETSTK. If the assembly language code simply moved the new stack pointer into the S-register and returned, the program would crash since the return address would be undefined. The code above changes the S-register, but saves the return address in the X-register. It finally returns by jumping through the X-register.

Here you can see how SBasic processes the arguments to a statement. The argument $0060 for the SETSTK statement is pushed onto SB's data stack; it is NOT passed in the D-register. Thus, before the assembly language code in the SETSTK routine can do anything with the argument, it must first execute a JSR to the SB internal routine _PULL. _PULL pulls the top element from SB's data stack and returns it in the D-register. Refer to the GOSUB statement above for details on how SBasic parses arguments to statements.

Note that you don't have to use a JSR to _PULL just to get an argument into the D-register. Advanced programmers can directly access arguments using offsets to the Y-register. Regardless of how you access the arguments, however, your assembly language routine MUST remove all arguments from the data stack before returning! If not, repeated invocations of your routine will eventually crash the target system.

This brings up another element of the ASMFUNC usage. SBasic does no error checking to make sure your program uses an ASMFUNC label consistently. Thus, you could use the same assembly language routine as both a function and a statement, if you so choose. What's more, you could pass varying numbers of arguments to the same ASMFUNC label as a statement. You are responsible for ensuring your assembly language routine behaves properly in all cases. SBasic will blindly load up the arguments and perform the JSR; your code has to deal properly with any variations in argument count.

Note that the second example is not completely general, since it can be called only from the top level (main) of your SB program. If, for example, you tried to do a SETSTK from within an SB routine, that routine would crash when it executed a RETURN statement, since its return address had moved when the stack pointer changed.

When writing assembly language code invoked with ASMFUNC labels, remember to preserve SB's registers. For the 68hc11 and 68hc12, the Y-register holds the data stack pointer and the S-register holds the return stack pointer. Additionally, any argument returned to the calling routine is passed back in the D-register.

To summarize, you can use an ASMFUNC label as either a statement or a function. If used as a statement, you can supply zero, one, or more arguments; any arguments will be pushed left to right onto the data stack before the JSR to your label is executed. If used as a function, you MUST supply one and only one argument to the function. This argument will be passed to the called routine in the D-register, though your routine can ignore it. Upon returning from your routine, the contents of the D-register will be used as the returned value of the function.

Additionally, remember that ASMFUNC labels do not exist as Sbasic labels. You cannot do a GOSUB to an ASMFUNC label, since that label only exists in the assembly language module.

Since the ASMFUNC statement only affects subsequent references, the statement must appear in your source file before any references to the target label appear. Thus, it's best if you put all of your ASMFUNC statements near the beginning of your source file.

ASMFUNC, _INKEY, and _OUTCH

Generally, you should not use ASMFUNC to define labels used internally by SBasic run-time routines. Doing so will cause the assembler that processes the resulting output file to report an error. This happens because SBasic will create two identical labels in its output assembly language file, one label that you defined in your ASM section and a matching label in an SBasic library file.

The exceptions to this rule involve the labels _INKEY and _OUTCH. SBasic reserves these labels for internal routines that handle character I/O. By default, the _OUTCH routine sends the character in the A-register to the 68hc11's SCI port, and the _INKEY routine returns a character from the SCI in the D-register. Sbasic automatically appends a library file containing the assembly language source for these routines whenever it processes a statement that requires them.

In this one case, SBasic permits your source file to override the normal inclusion of a library file. For example, if SBasic detects an ASMFUNC statement defining the label _OUTCH:

 asmfunc _outch

SBasic does not append the _OUTCH library file. Instead, Sbasic relies on whatever _OUTCH assembly language routine you define in your SBasic source file to handle all character output.

This feature allows you to redirect the output from all SBasic PRINT and OUTCH statements to an alternate device. Similarly, you can redirect the input for the SBasic INKEY function from an alternate device. This makes it easy to add SBasic support for formatted output to devices such as LCDs, or character input from custom keyboards.

 For example:

 asmfunc _outch

 asm

 _outch

 staa $1004 send char in A to port b

 rts

 endasm

 main:

 print "2 + 2 ="; 2+3

 end

This sample program sends a mathematical statement to port B that should convince anyone your computer is loony.

Note that the labels _OUTCH and _INKEY must appear within an ASM-ENDASM block. Also note that the argument to these ASMFUNC statements include the assembly-language (underscored) version of the routine name, NOT the normal SBasic representation.

Character I/O on the 68hc11

The PRINT and OUTCH statements generate code for sending characters and text to some type of host, using library routines. For the 68hc11, this defaults to routines that use the SCI.

Note, however, that SBasic does not actually set up the SCI for serial transfers. Thus, it is not usually enough to simply PRINT a string; your code must first (as a minimum) enable the SCI transmitter and set the SCI baud rate.

This same requirement exists for the INKEY() function. Before your code can successfully invoke the INKEY() function, it must first enable the SCI receiver and set the SCI baud rate.

Fortunately, this is a simple task. Assuming the 68hc11 target system uses an 8.0 MHz crystal, the following statements will set up the SCI for 9600 baud and enable the SCI receiver and transmitter:

 include "regs11.lib"

 main:

 pokeb baud, $30 ' 9600 baud

 pokeb sccr2, $0c ' enable rcvr and xmtr

 print "Hello, world!" ' now say something

If your 68hc11 target system uses a crystal frequency other than 8.0 MHz, consult the Motorola technical literature for the proper data value to POKEB into the BAUD register.

1
Page 2

SBasic User's Manual SBasic Version 2.5 Printed: May 8, 1998 [Modify : 14 June, 2000]

